86 research outputs found

    A Decentralized Method for Joint Admission Control and Beamforming in Coordinated Multicell Downlink

    Full text link
    In cellular networks, admission control and beamforming optimization are intertwined problems. While beamforming optimization aims at satisfying users' quality-of-service (QoS) requirements or improving the QoS levels, admission control looks at how a subset of users should be selected so that the beamforming optimization problem can yield a reasonable solution in terms of the QoS levels provided. However, in order to simplify the design, the two problems are usually seen as separate problems. This paper considers joint admission control and beamforming (JACoB) under a coordinated multicell MISO downlink scenario. We formulate JACoB as a user number maximization problem, where selected users are guaranteed to receive the QoS levels they requested. The formulated problem is combinatorial and hard, and we derive a convex approximation to the problem. A merit of our convex approximation formulation is that it can be easily decomposed for per-base-station decentralized optimization, namely, via block coordinate decent. The efficacy of the proposed decentralized method is demonstrated by simulation results.Comment: 2012 IEEE Asilomar Conference on Signals, Systems, and Computer

    Resilient Distributed Optimization Algorithms for Resource Allocation

    Get PDF
    Distributed algorithms provide flexibility over centralized algorithms for resource allocation problems, e.g., cyber-physical systems. However, the distributed nature of these algorithms often makes the systems susceptible to man-in-the-middle attacks, especially when messages are transmitted between price-taking agents and a central coordinator. We propose a resilient strategy for distributed algorithms under the framework of primal-dual distributed optimization. We formulate a robust optimization model that accounts for Byzantine attacks on the communication channels between agents and coordinator. We propose a resilient primal-dual algorithm using state-of-the-art robust statistics methods. The proposed algorithm is shown to converge to a neighborhood of the robust optimization model, where the neighborhood's radius is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201

    Spectral partitioning of time-varying networks with unobserved edges

    Full text link
    We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this fashion, the filtered graph signals can be interpreted as defined on a time-varying network. We model each of the underlying network realizations as generated by an independent draw from a latent stochastic blockmodel (SBM). To infer the partition of the latent SBM, we propose a simple spectral algorithm for which we provide a theoretical analysis and establish consistency guarantees for the recovery. We illustrate our results using numerical experiments on synthetic and real data, highlighting the efficacy of our approach.Comment: 5 pages, 2 figure

    Online Inference for Mixture Model of Streaming Graph Signals with Non-White Excitation

    Full text link
    This paper considers a joint multi-graph inference and clustering problem for simultaneous inference of node centrality and association of graph signals with their graphs. We study a mixture model of filtered low pass graph signals with possibly non-white and low-rank excitation. While the mixture model is motivated from practical scenarios, it presents significant challenges to prior graph learning methods. As a remedy, we consider an inference problem focusing on the node centrality of graphs. We design an expectation-maximization (EM) algorithm with a unique low-rank plus sparse prior derived from low pass signal property. We propose a novel online EM algorithm for inference from streaming data. As an example, we extend the online algorithm to detect if the signals are generated from an abnormal graph. We show that the proposed algorithms converge to a stationary point of the maximum-a-posterior (MAP) problem. Numerical experiments support our analysis

    Detecting Central Nodes from Low-rank Excited Graph Signals via Structured Factor Analysis

    Full text link
    This paper treats a blind detection problem to identify the central nodes in a graph from filtered graph signals. Unlike prior works which impose strong restrictions on the data model, we only require the underlying graph filter to satisfy a low pass property with a generic low-rank excitation model. We treat two cases depending on the low pass graph filter's strength. When the graph filter is strong low pass, i.e., it has a frequency response that drops sharply at the high frequencies, we show that the principal component analysis (PCA) method detects central nodes with high accuracy. For general low pass graph filter, we show that the graph signals can be described by a structured factor model featuring the product between a low-rank plus sparse factor and an unstructured factor. We propose a two-stage decomposition algorithm to learn the structured factor model via a judicious combination of the non-negative matrix factorization and robust PCA algorithms. We analyze the identifiability conditions for the model which lead to accurate central nodes detection. Numerical experiments on synthetic and real data are provided to support our findings. We demonstrate significant performance gains over prior works
    • …
    corecore